Computational Modeling and Experiments of Natural Convection for a Titan Montgolfiere

نویسندگان

  • Tim Colonius
  • Daniel Appelö
  • Julian Nott
  • Jeffrey Hall
چکیده

Computational models are developed to predict the natural convection heat transfer and buoyancy for a Montgolfiere under conditions relevant to the Titan atmosphere. Idealized single and double-walled balloon geometries are simulated using algorithms suitable for both laminar and (averaged) turbulent convection. Steady-state performance results are compared to existing heat transfer coefficient correlations. The laminar results, in particular, are used to test the validity of the correlations in the absence of uncertainties associated with turbulence modeling. Some discrepancies are observed, especially for convection in the gap, and appear to be primarily associated with temperature nonuniformity on the balloon surface. The predicted buoyancy for the single-walled balloon in the turbulent convection regime, predicted with a standard k − ǫ turbulence model, was within 10% of predictions based on the empirical correlations. There was also good agreement with recently conducted experiments in a cryogenic facility designed to simulate the Titan atmosphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical and Experimental Modeling of Natural Convection for a Cryogenic Prototype of a Titan Montgolfiere

Natural convection in a spherical geometry is considered for prediction of the buoyancy characteristics of one meter diameter singleand double-walled balloons in a cryogenic environment. The steady-state flow characteristics obtained by solving the ReynoldsAveraged Navier Stokes equations (RANS) with a standard k-ε model are used to determine the balloon performance in terms of net buoyancy as ...

متن کامل

Numerical Simulation and Parametric Reduced Order Modeling of the Natural Convection of Water-Copper Nanofluid

In this article, a coupled computational framework is presented for the numerical simulation of mass transfer under the effects of natural convection phenomena in a field contains water-copper Nano-fluid. This CFD model is build up based on accurate algorithms for spatial derivatives and time integration. The spatial derivatives have been calculated using first order upwind and second order cen...

متن کامل

A Numerical Modeling for Natural Convection Heat Transfer in Porous Media With Generated Internal Heat Sources

In this paper a numerical method is used to study the unsteady state natural convection heat transfer within a confined porous media with uniform internal heat generation. The governing equations based on the Darcy model and Bossiness approximations are solved, using the finite difference Alternating Direction Implicit (ADI) method. The developed program was used to simulate natural convection ...

متن کامل

Transient Natural Convection in an Enclosure with Variable Thermal Expansion Coefficient and Nanofluid Properties

Transient natural convection is numerically investigated in an enclosure using variable thermal conductivity, viscosity, and the thermal expansion coefficient of Al2O3-water nanofluid. The study has been conducted for a wide range of Rayleigh numbers (103≤ Ra ≤ 106), concentrations of nanoparticles (0% ≤ ϕ ≤ 7%), the enclosure aspect ratio (AR =1), and temperature differences between the cold a...

متن کامل

Numerical investigation of natural convection phenomena in uniformly heated trapezoidal Cylinder inside an elliptical Enclosure

A numerical study of the natural convection of the laminar heat transfers in the stationary state was developed in a horizontal ring and compared between a heated trapezoidal internal cylinder and a cold elliptical outer cylinder. This annular space is traversed by a Newtonian and incompressible fluid. The Prandtl number is set to 0.7 (air case) for different Rayleigh numbers. The system of equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009